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Abstract

Grapheme-to-phoneme conversion is the task of finding the pronunciation of a word given its written form. It has important appli-
cations in text-to-speech and speech recognition. Joint-sequence models are a simple and theoretically stringent probabilistic framework
that is applicable to this problem. This article provides a self-contained and detailed description of this method. We present a novel
estimation algorithm and demonstrate high accuracy on a variety of databases. Moreover, we study the impact of the maximum
approximation in training and transcription, the interaction of model size parameters, n-best list generation, confidence measures,
and phoneme-to-grapheme conversion. Our software implementation of the method proposed in this work is available under an Open
Source license.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Alphabetic writing systems are based on the idea that
the orthographic form is a conventional representation of
a word’s pronunciation. In a perfectly phonological alpha-
bet, there would be a one-to-one correspondence between
letters (graphemes) and phonemes. However, in most natu-
ral languages the association between letters and sounds is
to some extent ambiguous and context dependent. Most
languages have continued to evolve after their orthogra-
phies have been canonized, so that the strict correspon-
dence between letters and sounds has weakened over
time. In particular, loanwords often retain the spelling of
their language of origin instead of being adapted to match
their host language’s orthographic conventions.

Grapheme-to-phoneme conversion (G2P) refers to the
task of finding the pronunciation of a word given its writ-
ten form. It has important applications in human language
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technologies, especially speech synthesis, but also speech
recognition and sounds-like queries in textual databases.

The main contributions of the present work are:

� A coherent approach to grapheme-to-phoneme conver-
sion is presented that is well founded on statistical deci-
sion theory.
� Several parameters and variations of this method are

studied systematically that have not been addressed
comprehensively in previous publications. In particular,
different alignment schemata, model smoothing, as well
as the use of maximum approximations in training and
application are studied. Moreover, we provide details
of our implementation, which is freely available.
� It is demonstrated that the proposed method performs

more accurately than or on par with all previously pub-
lished results on several test sets.

In this article, we will first attempt an overview of the
variety of published grapheme-to-phoneme conversion
techniques in Section 2. In the remainder we will focus
on an approach using statistical joint-sequence models.
After laying the theoretical foundations of this approach
in Section 3, we will undertake a detailed exposition of this
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method in Sections 4–6. Thereby, we will introduce a novel
model estimation technique and will discuss several imple-
mentation aspects which have not been addressed in previ-
ous publications. Section 7 presents experimental results
demonstrating the accuracy of the proposed method, which
will be analyzed in the Section 8. Finally, in Section 9 we
will discuss some of our experiences with using graph-
eme-to-phoneme conversion in practical applications.

2. Review of grapheme-to-phoneme conversion techniques

Automatic grapheme-to-phoneme conversion was first
considered in the context of text-to-speech (TTS) applica-
tions. After normalization (expanding abbreviation,
numerals, etc.) the input text needs to be converted to a
sequence of phonemes which is then used to control a
speech synthesizer. The simplest technique is dictionary

look-up. While effective, it has serious limitations: making
a pronunciation dictionary of significant size (over
100,000 entries) by hand is tedious and therefore costly.
Also the storage requirements of such a database can be
problematic for embedded or mobile devices. More impor-
tantly, a finite dictionary will always have limited coverage,
while TTS systems are often expected to handle arbitrary
words.

To overcome the limitations of simple dictionary look-
up, rule-based conversion systems were developed. These
can typically be formulated in the framework of finite-state
automata (Kaplan and Kay, 1994). Often rule-based G2P
systems also incorporate a dictionary as an exception list.
While rule-based systems provide good (or even complete)
coverage they have two drawbacks: firstly, designing the
rules is hard and requires specific linguistic skills. Secondly,
natural languages frequently exhibit irregularities, which
need to be captured by exception rules or exception lists.
The interdependence between rules can be quite complex,
so rule designers have to cross-check if the outcome of
applying the rules is correct in all cases. This makes devel-
opment and maintenance of rule systems very tedious in
practice. Moreover, a rule-based G2P system is still likely
to make mistakes when presented with an exceptional
word, not considered by the rule designer.

In contrast to the knowledge-based approach outlined
above, the data-driven approach to grapheme-to-phoneme
conversion is based on the idea that given enough examples
it should be possible to predict the pronunciation of unseen
words purely by analogy. The benefit of the data-driven
approach is that it trades the intellectually challenging task
of designing pronunciation rules, for the much simpler one
of providing example pronunciations. For native speakers
it is much easier to judge the correctness of a pronunciation
or to write down the pronunciation of a specific word, than
to formulate general spelling rules. The crucial question in
data-driven G2P is how analogy should be implemented
algorithmically. Starting with the work of Sejnowski and
Rosenberg (1987), various machine learning techniques
have been applied to this problem in the past. Before we
try to give an overview in the following, we note that there
are two partly competing goals in data-driven G2P, namely
lexicon compression and generalization. Lexicon compres-
sion aims to minimize the storage (and computational)
requirements by minimizing the error on seen data using
a compact model. Generalization aims to overcome the
limited coverage of a given dictionary by minimizing error
on unseen data.

It is worth noting that the pronunciations used to train a
data-driven G2P model ought to exemplify the pronuncia-
tion rules of the language. This is contrary to the exception
list used by rule-based systems which only need to cover the
atypical pronunciations. Training a model using only
words with exceptional pronunciations would clearly defy
any analogy-based approach. In practice, available pro-
nunciation dictionaries which typically cover the most fre-
quent words of the language are often used to train data-
driven G2P models. While such dictionaries usually do
contain atypical words, the patterns found in the more fre-
quent, exemplary words will normally prevail. In fact, the
data-driven approach mitigates the distinction between
rules and exceptions. Ultimately, training data should be
representative of the application domain.

2.1. Techniques based on local classification

A large group of G2P methods presuppose an alignment
of the training data between letters and phonemes or create
such an alignment in a separate pre-processing step. The
alignment is typically construed so that each alignment
item comprises exactly one letter. The number of corre-
sponding phonemes can be zero (epsilon, or ‘‘null pho-
neme”), one, or greater than one, as in the following
example. We call this type of alignment 1-to-n.
Alignments can be created using hand-crafted rules, by (dy-
namic programming) search using predefined alignment
constraints or costs, or by an iterative estimation of align-
ment probabilities in the spirit of the approach described in
Section 3.2. In any case, the alignment problem is in this
approach not part of the actual transcription method.

Typically, the input sequence is processed sequentially
(e.g. from left to right). For each input character, a (possi-
bly empty) sequence of phonemes is chosen from a small
set of allowables. The prediction of the output phoneme
(or phoneme group) is based on the context of the current
letter. Since the decision for each position is taken before
proceeding to the next, we call this family of techniques
local classification. The most popular techniques used to
do this prediction are neural networks and decision trees.
Taking decisions about each phoneme locally is clearly
not optimal from a decision theoretic point of view. How-



436 M. Bisani, H. Ney / Speech Communication 50 (2008) 434–451
ever, this strategy avoids the need to use a search algorithm
that is generally necessary to find the globally optimal
solution.

Sejnowski and Rosenberg (1987) as well as McCulloch
et al. (1987) applied neural networks to this classification
problem. They use a three-layer neural network. The input
of the network is a context window of plus/minus three let-
ters. The input layer uses an orthogonal representation, i.e.
one input for each type of letter. The output layer repre-
sents the predicted phoneme by means of articulatory fea-
tures. Jensen and Riis (2000) and Häkkinen et al. (2003)
have improved this approach by using a more sophisticated
letter code-book representations in the input layer.

Torkkola (1993) uses a technique called dynamically
expanding context which generates a decision tree that
takes an asymmetrical window around the current letter
into account. Daelemans and van den Bosch (1996) pro-
pose the use of decision trees trained using the information
gain criterion (IG-Tree). Questions are used only about the
surrounding letters and the information gain is computed
only once for each attribute. Andersen et al. (1996) grow
binary decision trees using the Gini criterion. They allow
questions about letters five positions to the left and to
the right of the current letter. In addition to questions for
individual letters, tests for membership in 10 graphemic
classes are allowed. Pagel et al. (1998) also grow decision
trees using the information gain criterion but recompute
the information gain for each node split. In addition to
the three preceding and following letters, they allow the
algorithm also to take the three following phonemes into
account. This requires the word to be processed in reverse
order from right to left, since the phonemes are considered
to be the result of decisions taken previously. They also
report improvements from adding questions about the
part-of-speech (POS) of the word considered. Suontausta
and Häkkinen (2000) and Häkkinen et al. (2003) also
employ information gain derived decision trees. The set
of possible questions includes up to four preceding and
four following letters, the preceding phonemes and their
phonemic classes.

2.2. Pronunciation by analogy

The term pronunciation by analogy (PbA) would be
appropriate for all data-driven grapheme-to-phoneme con-
version techniques, but typically it is used more specifically
for approaches that could be described as nearest-neigh-
bor-like. The common theme among PbA techniques is
that they scan the training lexicon for words or parts of
words that are in some sense similar to the word to be tran-
scribed. The output pronunciation is then chosen to be
analogous (in some sense) to these retrieved examples. By
considering each word as a whole, PbA goes beyond local
classification, but is generally not founded on a probabilis-
tic model.

The method proposed by Dedina and Nusbaum (1991)
examines every word in the lexicon and builds a pronunci-
ation lattice structure using the phonetic representations of
the words that match the input string. In this pronuncia-
tion lattice, each node represents a candidate phoneme,
and each path through the lattice represents a possible pro-
nunciation. Marchand and Damper (2000) extend and
improve this approach by combining different path scoring
strategies. Yvon (1996) constructs the lattice representing
all potential pronunciations of a word by extracting over-
lapping chunks from words in the training lexicon. The
transcription is obtained by determining the best path
through the lattice based on maximum chunk overlap
and chunk frequency.

The method described by Bagshaw (1998) operates with
a set of hand-specified grapheme phoneme correspon-
dences (GPC, cf. Section 3.2) and induces context depen-
dent rules over these units (with a context size of two
GPC positions in both directions). The final transcription
is obtained by a global search over the lattice of competing
segmentations with scores based on rule weights and rule
violation penalties.

Bellegarda (2005) uses latent semantic analysis to define
a global similarity measure for words. To transcribe an
unknown word, first a set of similar lexicon entries is com-
piled, then all sequences in this list are aligned and for each
aligned position the most frequent phoneme is chosen.

2.3. Probabilistic approaches

A number of authors have approached the G2P problem
from a probabilistic perspective. Lucassen and Mercer
(1984) create 1-to-n alignments of the training data using
a context independent channel model. The prediction of
the next phoneme is based on a symmetric window of let-
ters and left-sided window of phonemes. To this end they
induce binary feature functions using a mutual information
criterion and then construct a regression tree. The leafs of
this tree carry probability distributions over the set of pho-
nemes. Jiang et al. (1997) presented an improved regression
tree approach, using a refined entropy weighting scheme,
smoothing of leaf distributions, bagging and rescoring with
a phoneme trigram. One of the two models studied by
Chen (2003) uses a similar set of feature functions but uses
a conditional maximum entropy model for predicting
phonemes.

Meng et al. (1994) model word pronunciations by mor-
phological parse trees using a layered bigram as the statis-
tical parsing approach. Besling (1994) obtains 1-to-n
alignments by dynamic programming using a predefined
and uniform distribution. He uses Bayes’ formula to
decompose the probability of candidate pronunciations
into a phonotactic model, which in this case is a 7-gram
on phonemes, and a matching model, which is the condi-
tional probability of the current letter given the current
phoneme as well as the previous letter and phoneme.

Some authors have proposed joint-sequence models.
These models, which are central to this article, are dis-
cussed in the following section.
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3. Joint-sequence models

3.1. Statistical problem formulation

An orthographic form is given as a sequence of letters,
also referred to as characters or graphemes. We denote
the set of graphemes as G. A pronunciation is represented
in terms of a phonemic transcription, i.e. a sequence of pho-
neme symbols. The set of phonemes is denoted as U. The
task of grapheme-to-phoneme conversion, or phonetic tran-
scription, can be formalized using Bayes’ decision rule as

uðgÞ ¼ argmax
u02U�

pðg;u0Þ ð1Þ

This means, for a given orthographic form g 2 G� we seek
the most likely pronunciation u 2 U�. Here V � denotes the
set of all strings over symbols in V (Kleene star). It should
be noted that this decision strategy is optimal with respect
to word error, i.e. the risk of not getting the correct pro-
nunciation is minimized.

3.2. Co-segmentations and graphones

The fundamental idea of joint-sequence models is that
the relation of input and output sequences can be generated
from a common sequence of joint units which carry both
input and output symbols. In the simplest case, each unit
carries zero or one input and zero or one output symbol.
This corresponds to the conventional definition of finite
state transducers (FST). When units may carry multiple
input and output symbols, the terms co-sequence and joint

multigram (Deligne et al., 1995) are used. While the
approach is applicable to any monotonous translation
problem, it is formulated here in the context of graph-
eme-to-phoneme conversion. As in our previous study
(Bisani and Ney, 2002) we refer to joint units here as
graphones. Other terms used to refer to joint units in the
context of grapheme-to-phoneme conversion are graph-

eme-to-phoneme correspondences (GPC) (Galescu et al.,
2001) and graphonemes (Vozila et al., 2003).

A grapheme–phoneme joint multigram, or graphone for
short, is a pair q ¼ ðg;uÞ 2 Q � G� � U� of a letter
sequence and a phoneme sequence of possibly different
length. We use the expressions gq and uq to refer to the
first and second component of q, respectively. We call a
graphone singular, if it has at most one letter and at most
one phoneme. The inventory of graphones Q can be
inferred automatically from training data (cf. Section 4)
or it can be specified by hand. In the joint multigram model
it is assumed that for each word its orthographic form and
its pronunciation are generated by a common sequence of
graphones. For example, the pronunciation of ‘‘mixing”
may be regarded as a sequence of four graphones:
The letter and the phoneme sequences are grouped into an

equal number of segments. Such a grouping is called a joint
segmentation, or co-segmentation. The more general term
alignment is often used interchangeably. We refer to this
particular type of alignment as m-to-n. For a given pair
of input and output strings, the segmentation into gra-
phones may not be unique. Compared to the methods de-
scribed in Section 2.1, which may also have alignment
ambiguity, m-to-n alignments have the additional freedom
of how input letters are grouped. For example the follow-
ing segmentation into seven singular graphones is equally
valid. We refer to this as an 01-to-01, or FST-type
alignment.
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Because of this ambiguity the joint probability pðg;uÞ is
determined by summing over all matching graphone
sequences:

pðg;uÞ ¼
X

q2Sðg;uÞ
pðqÞ ð2Þ

where q 2 Q� is a sequence of graphones and Sðg;uÞ is the
set of all co-segmentations of g and u:

Sðg;uÞ :¼ q 2 Q�
gq1

^ � � �^ gqK
¼ g

uq1
^ � � �^ uqK

¼ u

�����
)(

ð3Þ

Here ^ denotes sequence concatenation and K ¼ jqj is the
length of the graphone sequence q. The joint probability
distribution pðg;uÞ has thus been reduced to a probability
distribution pðqÞ over graphone sequences q ¼ q1; . . . ; qK ,
which can be modeled using a standard M-gram
approximation:

pðqK
1 Þ ffi

YKþ1

j¼1

pðqjjqj�1; . . . ; qj�Mþ1Þ ð4Þ

Positions i < 1 and i > K are understood to hold a special
boundary symbol qi ¼? which allows modeling of charac-
teristic phenomena at word starts and ends. In the follow-
ing sections we present a novel estimation method for this
type of model and continue with an experimental
assessment.

3.3. Related work

Deligne et al. (1995) introduced the maximum likelihood
procedure for inferring many-to-many alignments using
the EM algorithm. They study two models for grapheme-
to-phoneme conversion based on this. One uses a joint
unigram model on multigrams, the other uses a Bayes
decomposition in to a phonotactic bigram and a context
independent matching model. In a previous study the
multigram approach was combined with a joint trigram
model (Bisani and Ney, 2002). Galescu and Allen (2002)
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and Vozila et al. (2003) use a very similar approach with a
joint 4-gram model and a different alignment method.

In contrast to these ‘‘chunk”-based methods, it is also
possible to build a joint model with only singular gra-
phones. Caseiro et al. (2002) use FST-type alignments
which they derive by a minimum edit cost criterion with
manually specified costs. A joint 8-gram model is built
and converted to an FST. Chen (2003) reports very good
results with a structurally similar model. He uses a maxi-
mum entropy 8-gram with Gaussian priors and obtains
alignments by EM training of the model.

4. Model estimation

4.1. Multigram inference through expectation maximization

In the following, we consider the problem of inferring a
model using variable length units from training data that is
not co-segmented. Given is a training sample of N words
paired with their pronunciations O1; . . . ;ON ¼ ðg1;u1Þ;
. . . ; ðgN ;uN Þ, but without an alignment on the level of let-
ters and phonemes. First we note that if we have a joint-
sequence model we can compute the probability of any
co-segmentation for each sample, since a co-segmentation
S uniquely defines a joint sequence:

pðg;u;SÞ ¼ pðqÞ ð5Þ
Thus, the log-likelihood of the training data can be formu-
lated as the sum over all segmentations:

logLðO1; . . . ;ONÞ ¼
XN

i¼1

logLðOiÞ

¼
XN

i¼1

log
X

S2SðOiÞ
pðOi;SÞ

 !
ð6Þ

The segmentation S into joint units is a hidden variable.
As first demonstrated by Deligne and Bimbot (1995), max-
imum likelihood training of this model can be performed
using the expectation maximization (EM) algorithm. We
first consider the context independent unigram case
ðM ¼ 1Þ. The re-estimation equations for the updated
parameters #0 are

pðq;#Þ ¼
Yjqj
j¼1

pðqj;#Þ ð7Þ

eðq;#Þ :¼
XN

i¼1

X
q2Sðgi;uiÞ

pðqjgi;ui;#ÞnqðqÞ ð8Þ

¼
XN

i¼1

X
q2Sðgi ;uiÞ

pðq;#ÞP
q02Sðgi ;uiÞpðq

0;#Þ nqðqÞ

pðq;#0Þ ¼ eðq;#ÞP
q0eðq0;#Þ

ð9Þ

where nqðqÞ is number of occurrences of the graphone q in
the sequence q. The quantity eðq;#Þ, which we call the
evidence for q, is the expected number of occurrences of
the graphone q in the training sample under the current
set of parameters #. The evidence can be calculated effi-
ciently by a forward–backward procedure (Deligne and
Bimbot, 1997). This is further described in Section 6.1.

For higher order models ðM > 1Þ, we introduce the sym-
bol h do denote the sequence of preceding joint units
hj ¼ ðqj�Mþ1; . . . ; qj�1Þ. We define nq;hðqÞ to denote the
number of occurrences of the M-gram qj�Mþ1; . . . ; qj in q.
With this shorthand we can state the re-estimation equa-
tions as follows:

pðq;#Þ ¼
Yjqj
j¼1

pðqjjhj;#Þ ð10Þ

eðq; h;#Þ :¼
XN

i¼1

X
q2Sðgi;uiÞ

pðqjgi;ui;#Þnq;hðqÞ ð11Þ

¼
XN

i¼1

X
q2Sðgi ;uiÞ

pðq;#ÞP
q02Sðgi;uiÞpðq

0;#Þ nq;hðqÞ

pðqjh;#0Þ ¼ eðq; h;#ÞP
q0eðq0; h;#Þ ð12Þ

Again sequences q are implicitly understood to start and
end with a boundary symbol.

Obviously, the above equations do not permit a new
graphone to emerge once its probability is zero. Therefore,
we initialize the model parameters by assigning a uniform
distribution over all graphones satisfying certain manually
set length constraints. We typically use only a simple upper
limit L, i.e. jgqj 6 L and juqj 6 L, but exclude the non-pro-
ductive case jgqj ¼ juqj ¼ 0. More complex constraints are
conceivable, e.g. different limits for letter and phoneme
sequence lengths, or a lower limit in addition to the upper
one. The uniform initial distribution is the inverse of the
total number of allowed graphones:

p0ðqÞ ¼
XL

l¼0

XL

r¼0

jGjljUjr
" #�1

ð13Þ

The summand for r ¼ l ¼ 0 accounts for the additional
end-of-sequence token.

The graphone length constraint parameter L has a sig-
nificant effect on the size of the resulting graphone inven-
tory. The other external parameter of the sequence model
is maximum the history length M. Together with L it
defines the effective span of the model, i.e. the number of
letters or phonemes that affect the estimated probabilities
at a given position.

It is generally known that maximum likelihood esti-
mates like (12) tend to over-fit the training data and pre-
dict unseen data poorly. Also with the flat initialization
any graphone that can be construed from the training
examples will receive some probability mass, whereas only
a small subset of these is expected to contribute to the
‘‘correct” model. These two issues will be addressed by
smoothing and trimming, respectively, as discussed in the
following.
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4.2. Evidence trimming

In a previous study the use of evidence trimming to
address over-fitting was suggested (Bisani and Ney,
2002). That is, to trim the evidence values below a thresh-
old by replacing eðq; h;#Þ in Eq. (12) with

êðq; h;#Þ ¼
0 if eðq; h;#Þ < s

eðq; h;#Þ otherwise

�
ð14Þ

This procedure causes the unlikely graphones to gradually
die out during the iteration process. Actually, there is al-
ways implicit trimming caused by the limited machine pre-
cision. Evidence trimming is superior to model trimming
where a similar thresholding is applied to the probability
estimates pðq;#Þ. This is because even graphones with
low probabilities pðq;#Þ can have a conditional probability
pðqjgi;ui;#Þ close to one in certain words. Removing them
would leave the training sample not representable by the
model. Previous experiments have shown that evidence
trimming as such is effective in controlling the size of the
graphone inventory (Bisani and Ney, 2002). The threshold
s needs to be adjusted on development data. In said previ-
ous study, smoothing of the M-gram model is done inde-
pendently from trimming. The following section proposes
an integrated smoothing technique.

4.3. Discounted evidence

Comparing the estimation equation (12) to typical n-
gram language modeling, we note that we are faced with
essentially the same modeling problem, except that the evi-
dence values take the place of classical n-gram counts. It is
well known that effective smoothing techniques are crucial
to building good language models. Empirical studies have
shown that absolute discounting with interpolation and a
marginal preserving back-off distribution, also known as
Kneser–Ney1 smoothing, yields very good results and often
surpasses all other known smoothing methods (Kneser and
Ney, 1995; Chen and Goodman, 1999). Unlike counts in
classical language modeling, evidence values are generally
fractional. So care must be taken when adopting results
from classical language modeling, as their derivation may
rely on the assumption of integer counts. The estimation
equation with absolute discounting and interpolation is

pMðqjhÞ ¼
maxfeðq; hÞ � dM ; 0gP

q0eðq0; hÞ
þ kðhÞpM�1ðqj�hÞ ð15Þ

For clarity we have added a subscript M to indicate the or-
der of the distribution. dM P 0 is a discount parameter.
pM�1ðqj�hÞ is the generalized, lower order ðM � 1Þ-gram dis-
tribution conditioned on the reduced history �hi ¼ ðqi�Mþ2;
. . . ; qi�1Þ. kðhÞ is chosen to make the overall distribution
sum to one.
1 We have chosen to adhere to common usage, with apologies by the
second author for this breach of modesty.
Whereas in language modeling the smallest count value
is one (apart from unseen events), evidence values can
become arbitrarily small, in fact smaller than the discount.
So the discounted evidence estimation includes a form of
evidence trimming: graphones with evidence values below
the discount parameter are excluded from the model. A
notable difference between this form of evidence trimming
and the explicit form (14) is that in discounting we distrib-
ute the discounted evidence over unseen events, whereas in
(14) the remaining evidence is effectively distributed over
seen events.

We still need to specify the back-off distribution pM�1. In
classical language modeling two flavors of Kneser–Ney
smoothing are known: one is based on the idea of preserv-
ing the marginal distribution, the other one on leaving-one-
out (Kneser and Ney, 1995; Ney et al., 1997). Because we
deal with fractional ‘‘counts” it is not obvious how to apply
leaving-one-out. Therefore, we follow the marginal pre-
serving approach. The idea is to impose a consistency con-
straint for all reduced histories �h:X
h2�h

pMðqjhÞ
X

q0
eðq0; hÞ ¼

X
h2�h

eðq; hÞ ð16Þ

Substituting with (15) and solving for pM�1ðqj�hÞ under the
constraint that pM�1 is normalized yields

pM�1ðqj�hÞ ¼
êðq; �hÞP
q0 êðq0; �hÞ

ð17Þ

with ê being the reduced evidence

êðq; �hÞ :¼
X
h2�h

minfeðq; hÞ; dMg ð18Þ

Of course, pM�1ðqj�hÞ as in (17) needs to be smoothed as
well. Two approaches to smoothing pM�1 seem reasonable.
The first is to ‘‘plug in” the reduced evidence values (18) in
(15). The second is to smooth the constraints (16). It turns
out that both approaches lead to equivalent results, except
for different interpretation of the discount parameters.
Absolute discounting applies recursively to lower order dis-
tributions pM�2; pM�3; . . . p0. The zerogram distribution p0 is
uniform over all potential graphones (13).

In total we have introduced M discount parameters
d1; . . . ; dM . In classical language modeling, Ney et al.
(1995) as well as Chen and Goodman (1999) have recom-
mended estimates of the optimal discounts based on counts
of counts. Since fractional evidence values do not lend
themselves to counting, we resort to optimizing d on a
held-out set using Powell’s method (Press et al., 1992).

4.4. Bottom-up model construction and discounted

expectation maximization

To start the interative procedure we initialize the uni-
gram model with a flat probability distribution (13), i.e.
all possible multigrams have the same initial probability.
An alternative initialization uses unconstrained occurrence
counts cðqÞ in the training set (Deligne et al., 1995), that is,
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counting how often a graphone potentially occurs in each
word regardless of overlap with neighboring graphones.

cðqÞ :¼
XN

i¼1

Xjgi j

l1¼1

Xjgi j

l2¼l1

Xjuij

r1¼1

Xjuij

r2¼r1

� dððgl1
^ � � �^ gl2

;ur1
^ � � �^ ur2

Þ ¼ qÞ ð19Þ
These counts (subject to graphone length constraints) are
then used to compute the initial probability distribution
by applying the normal smoothing (15). Higher order M-
gram models are initialized using the previously generated
ðM � 1Þ-gram model. This means that we only allow histo-
ries which correspond to M-grams that were not dis-
counted away in the lower order model.

We now address the question of how evidence discount-
ing interacts with the EM algorithm. First we note that we
need a data set for optimizing the discount values that is
separate form the data used to compute the evidence val-
ues. Not separating these sets would lead to a gross under-
estimation of the discount. For this purpose we split the
training data O into a training set Ot and a typically smaller
held-out set Oh. The training set is used to compute the evi-
dence values, while the held-out set is used to adjust the dis-
count parameters.

The normal EM algorithm strictly improves the likeli-
hood of the training data in each iteration. This will typi-
cally lead to over-fitting and the likelihood of the held-out
data will start to decrease at some point. Therefore, in the
discounted EM algorithm the discount values are updated
to ensure that the likelihood of the held-out data does not
drop. The overall training procedure is outlined in Fig. 1.

4.5. Maximum approximation

Earlier studies of the joint multigram approach (Deligne
et al., 1995) used the maximum approximation to (9) dur-
ing training (the so-called Viterbi training).

eðq;#Þ ffi
XN

i¼1

nqðq̂iÞ ð20Þ

q̂i :¼ argmax
q2Q�

pðqjgi;ui;#Þ ð21Þ

¼ argmax
q2Sðgi ;uiÞ

pðq;#Þ
Fig. 1. Discounted
This algorithm searches for the most likely segmentation in
each iteration and derives the updated model from the gra-
phone counts in this segmentation. Smoothing and bot-
tom-up construction apply to this method just as
described before. The validity of this approximation will
be studied experimentally in Section 7.7.

5. Transcription

Having estimated the model, (1) can be applied to pho-
nemically transcribe unseen words. In producing the pho-
nemic transcription from the orthographic form, we
usually restrict ourselves to approximating the sum in (2)
by the maximum

pðg;uÞ 	 max
q2Sðg;uÞ

pðqÞ ð22Þ

This means, we look for the most likely graphone sequence
matching the given spelling and project it onto the
phonemes,

uðgÞ ¼ uð argmax
q2Q�jgðqÞ¼g

pðqÞÞ ð23Þ

The loss in accuracy incurred by this approximation will be
studied empirically in Section 7.8.

It is worth noting that because of the finite history
length the joint sequence model is in fact a weighted regular
relation and can thus be represented by a finite state trans-
ducer. This is particularly obvious in the L ¼ 1 case, when
only singular graphones are permitted and each graphone
can be presented by an FST transition. Each history then
corresponds to a state of the FST. Of course, models with
larger graphones ðL > 1Þ can also be represented as an FST
by introducing auxiliary states.

6. Implementation aspects

This section highlights some important aspects of a con-
crete implementation of the methods described thus far.
Our software implementation of these techniques is avail-
able under an Open Source license at http://www-i6.infor-
matik.rwth-aachen.de/web/Software/g2p.html.
EM algorithm.

http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
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6.1. Training

A hash map is used to map joint-multigrams to integer
indices. When long multigrams are allowed this map can
consume a large amount of memory since it encompasses
all possible multigrams, not only those that receive an evi-
dence above the discount threshold. M-gram models are
stored in a inverse prefix tree structure, where each node
corresponds to a particular M-gram history, the root corre-
sponding to the unigram, the leaves to the most specific his-
tories. The tree is embedded in an array in breath-first
order. So a single integer index can be used to refer to a
particular M-gram history.

Evidence values (11) are computed in three steps. First
segmentation graphs are constructed. Then edge posterior
probabilities are computed by means of the forward–back-
ward algorithm. Finally, evidence values are accumulated in
a hash map. In the first step the set of potential co-segmen-
tations is explicitly represented as a directed acylic graph.
Each edge corresponds to a graphone q. Each vertex v of
the graph corresponds to a position in the source sequence
l, a position in the target sequence r and an M-gram history
h : v ¼ ðl; r; hÞ. In the unigram case ðM ¼ 1Þ there is no
dependency on h and the graph can be envisioned as a rect-
angular grid. When the M-gram range exceeds the length of
the sequence considered, the graph degenerates to a tree
structure. With the explicit graph representation the com-
putation of forward, backward and posterior probabilities
can be implemented in a straight forward way. An implicit
representation, i.e., embedding the graph topology in the
algorithms, would greatly increase code complexity, espe-
cially for long-range M-gram models. The graph construc-
tion algorithm is based on a depth-first search, exploring
the space of segmentations starting from the beginning of
both sequences. Under the depth-first scheme it was possi-
ble to integrate topological sorting of the vertices into the
construction algorithm, as well as removal of dead ends.
The list of vertices in topological order is needed for the for-
ward/backward computation which constitutes the second
step of evidence computation.

The graphs for computing evidence values are deleted
immediately after accumulation has taken place, and are
re-generated in the next iteration. Keeping all graphs in
memory is infeasible for larger data sets. The same graph
construction is used to compute the likelihood of the
held-out set. Since the held-out set is typically small, the
graphs are not deleted for improved efficiency, especially
during adjustment of discount parameters. To provide a
sense of proportion: training of the 9-gram model on the
Pronlex data set, which is one of the larger data sets we
have used, took about 3 days on a 1.8 GHz CPU and
required up to 1GB of RAM.

6.2. First-best search

The optimization problem (23) can be viewed as a graph
search problem and can be solved using dynamic program-
ming techniques. The open choice is which search strategy is
to be employed. An obvious choice would be to work syn-
chronously on the input side, i.e. considering each input let-
ter after the other. A potential problem is that when
allowing graphones with an empty grapheme side (i.e. input
epsilon) in principle an infinite number of graphones can be
concatenated before advancing to the next input position. In
practice very large potential search spaces can be handled by
heuristically pruning the set of partial hypotheses. This tech-
nique is known as beam search. It has the risk of search
errors, when the beam width is too tight. The beam width
is a tunable parameter controlling the run-time vs. accuracy
trade-off. Chen (2003) uses beam search, whereas Galescu
and Allen (2002) do not allow null grapheme units and use
simple dynamic programming search. We have chosen to
implement a best-first search strategy, where the current
partial hypothesis with the highest probability is expanded
first. Alternative paths to the same node are recombined,
that is when a node is reached a second time via an alternate
path only the best scoring alternative is pursued further.
This procedure is equivalent to Dijkstra’s algorithm, or
the A�-algorithm with zero rest cost. This algorithm is exact
(no search errors), and we have found it to be highly efficient
for this problem. The computational effort on a typical PC
was so small that further investigations into optimizing
the search strategy were not considered worth while.

6.3. N-best search and posterior probabilities

A second decoding algorithm was implemented which is
computationally more expensive, but also provides addi-
tional results: first, a best-first search is conducted as
described above, but instead of relaxing alternative paths
to nodes that have already been seen, they are stored in a
graph structure. The resulting graph encodes all possible
translations of the source sequences. Each path uniquely
corresponds to a co-segmentation of the source sequence
and a possible translation. Executing the forward algo-
rithm with summation on the graph, yields the probability
of the source sequence very efficiently

pðgÞ ¼
X
u2U�

pðg;uÞ ¼
X

q2Q�jgðqÞ¼g

pðqÞ ð24Þ

This makes it easy to compute the posterior probability of
a translation:

pðujgÞ ¼
P

q2Sðg;uÞpðqÞ
pðgÞ ð25Þ

After the graph has been constructed, another A�-search is
conducted on the graph to generate n-best translations.
This second search works in reverse direction starting from
the final node of the graph. The forward probabilities with-
out summation are used as a perfect rest cost. Therefore,
the paths through the graph are retrieved in the right order
from highest to lowest probability. N-best list generation is
a theoretically pleasing way of generating alternative pro-
nunciation candidates. We will comment on this possibility
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in Section 9.1. The value of the posterior probability as a
confidence measure is examined in Section 9.4.

In practice we find that it is not necessary to carry out
the summation in the numerator of Eq. (25). Often no
alternative segmentation for the best translation occurs
among the top-scoring candidates (cf. Section 7.8). There-
fore, we will use the following approximation in most
experiments:

pðujgÞ 	 maxq2Sðg;uÞpðqÞ
pðgÞ ð26Þ
7. Experiments

7.1. Performance metrics

Accuracy of grapheme-to-phoneme conversion is mea-
sured in terms of phoneme error rate (PER), which is the edit
distance between the automatic transcription result (candi-
date) and reference pronunciation divided by the number of
phonemes in the reference pronunciation. Edit distance (or
Levenshtein distance) is the minimum number of insert,
delete and substitute operations required to transform one
sequence into the other (Levenshtein, 1965). If the reference
lexicon contains multiple pronunciation variants for a
word, the variant that has the smallest edit distance to the
candidate is used. An additional performance metric is word
error rate (WER), which is the relative proportion of words
that have at least one phoneme error. It is less forgiving to
near misses than phoneme error rate.

Several other publications report phoneme and word
accuracy instead of error rates. For words the relation is
very simple, word error rate is one minus word accuracy.
Phoneme accuracy is frequently used in studies using the
letter classification paradigm (cf. Section 2.1). Unfortu-
nately, direct translation to phoneme error rate is not
always possible, because it is often not clear whether accu-
racy is normalized on the number of (correct) phonemes or
on the number of letters, or how the case of multiple output
phonemes for one letter (‘‘pseudo phoneme”) is counted.
We therefore refrain from converting phoneme accuracies
given in other publications.

7.2. Data sets

In order to find out how the proposed method compares
in terms of accuracy to methods published previously, we
have tested it on a variety of English pronunciation dat-
abases. Table 1 gives an overview of the data sets used.
In all cases the original database is partitioned randomly
into disjoint training and testing sets. We have tried to rep-
licate the conditions reported in previous studies, so that
the performance figures can be compared directly.2 Two
2 We would like to express our gratitude to Stanley F. Chen who was
kind enough to share the pre-processing and data set partitioning he used
in (Chen, 2003).
of the data sets were made available as part of the Pascal
Letter-to-Phoneme Conversion Challenge (van den Bosch
et al., 2006). For the NETtalk database (Sejnowski and
Rosenberg, 1993) three different replications were used to
reproduce different settings used in other publications.
The approximate size of the training set is used to indicate
a particular replication. The 19k variant excludes homo-
graphs and one-letters words. The two other US English
databases are CMUdict (Weide, 1998) release 0.6 and
Pronlex (Kingsbury et al., 1997). Three databases of British
English were used: Beep (Robinson, 1997) as used in the
Pascal Challenge, OALD (Mitton, 1992), and Celex (Celex,
1995). The grapheme set of the Beep database includes
apostrophe, hyphen, underscore and period. (It also con-
tains some other rare punctuation characters that were
not counted in Table 1.) The OALD phoneme set includes
stressed and unstressed vowels. The Celex set is a randomly
chosen subset of the actual Celex database which excludes
phrases, abbreviations and homographs and in which all
words were converted to lower case. In addition, two
non-English databases were used: the German database
LexDb (Lüngen et al., 1998) and the French database Bru-
lex (Content et al., 1990). The LexDb set is a random sub-
set of the actual LexDb database. It excludes hyphenated
compounds, abbreviations and pronunciation variants
and has all words converted to lower case. The Brulex data
set again comes from the Pascal Challenge.

7.3. Convergence behavior

To illustrate the behavior of the proposed training algo-
rithm an example of the evolution of training data likeli-
hood and error rate over training iterations is shown in
Fig. 2. The held-out set likelihood increases monotonically.
This is ensured by periodically adjusting the discount
parameters. We observe that typically the discount slowly
grows from iteration to iteration. As one may expect the
discount increases with model order dM�1 < dM .

7.4. Size of graphones

The effective range covered by the model is controlled by
the length of graphones and the order M of the sequence
model. The actual size of each graphone is an outcome
from the training procedure. However the maximum size
of graphones considered is controlled by a parameter L.

Here all graphones of zero up to L letters and phonemes
are allowed. On the NETtalk 15k data set all combinations
of L and M in range from 1 to 4 and 1 to 6, respectively,
have been tested. The results are depicted in Fig. 3. We
see that performance monotonically improves with longer
M-gram range. Concerning the maximum graphone size
two regimes can be distinguished: When the sequence
model retains little or no context information ðM 6 2Þ,
chunks can step in and performance is better the longer
the chunks are. With longer range sequence models
ðM P 4Þ the situation is reversed and accuracy is worse



Table 1
Overview of pronunciation databases used in experiments on grapheme-to-phoneme conversion

Symbols Word length Prons/words Number of words x-validation

jGj jUj jgj juj Train Test Held

British English

Beep 30 45 9.0 7.6 1.073 215,713 25,706 – 10�
Celex 26 53 8.4 7.1 1 39,995 15,000 5000 –
OALD 26 82 8.2 6.9 1.008 56,961 6377 – –

US English

NETtalk 15k 26 50 7.3 6.2 1.010 14,851 4951 – –
NETtalk 18k 26 50 7.3 6.3 1.010 17,822 1980 – 10�
NETtalk 19k 26 50 7.3 6.3 1 18,595 1000 – 5�
CMUdict 27 39 7.5 6.3 1.062 106,837 12,000 – –
Pronlex 30 41 7.4 6.9 1.094 83,182 4800 2400 –

German

LexDb 30 46 10.4 9.0 1 40,000 15,000 5000 –

French

Brulex 40 39 8.5 6.7 1 24,726 2747 – 10�
Size of grapheme and phoneme inventory, average length of words, average number of pronunciations per word in the training set, number of ortho-
graphically distinct words in training, test and held-out set. In case of cross-validation averages are given.
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Fig. 2. Evolution of training data likelihood and model performance over
EM training iterations. NETtalk 15k corpus, L ¼ 2; M ¼ 1.

M. Bisani, H. Ney / Speech Communication 50 (2008) 434–451 443
the bigger the chunks are. This may be expected as data are
sparser for larger chunks. With four-grams and beyond the
best results are obtained with using singular graphones
only ðL ¼ 1Þ.

An additional experiment was conducted to study 1-to-n
alignments. This was done by choosing a different con-
straint on graphone length: all graphones have exactly
one letter, and zero up to L phonemes, i.e. jgqj ¼ 1 and
juqj 6 L. This type of alignment emulates typical local clas-
sification approaches (cf. Section 2.1). Results are given in
Table 2. We observe that for 1-to-L alignments the perfor-
mance is virtually independent of L. The restriction to
exactly one letter per graphone alone constrains the set of
segmentations largely, so that the additional constraint
on the number of phonemes does not play a significant
role. For L ¼ 1 accuracy is slightly higher and is on par
with the FST-type model that does additionally allow pho-
neme insertions. Considering that most words have fewer
phonemes than letters, this is understandable.

7.5. Size of held-out set

As explained above, it is necessary to reserve some part
of the training data as a held-out set which is used to adjust
the discount parameters. An open question is how large the
held-out set should be. On the one hand, too small a held-
out set will make the estimation of discounts unreliable,
leading to poor performance. On the other hand, enlarging
the held-out set reduces the amount of data used in the
actual model estimation, which also deteriorates perfor-
mance. The second problem can be partially alleviated by
doing additional fold-back training: After the training pro-
cess has converged, the held-out data is added to the esti-
mation data and training is iterated further until
convergence while keeping the discount parameters fixed.
To find the best trade-off, we have done experiments on
the NETtalk 15k data set with varying held-out set sizes



0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

ph
on

em
e 

er
ro

r 
ra

te
 [

%
]

M

L = 1
L = 2
L = 3
L = 4

Fig. 3. Grapheme-to-phoneme conversion performance on the NETtalk
15k data set for L-to-L models of different complexities. Error bars show
90% confidence intervals.

Table 2
Comparison of different types of alignment

Alignment type L ¼ 1 L ¼ 2 L ¼ 3 L ¼ 4

L-to-L 8.27 10.60 12.69 13.99
1-to-L 8.27 8.32 8.33 8.32

Phoneme error rates in percent on NETtalk 15k, M ¼ 6.
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using L ¼ 1 and M ¼ 6. Fig. 4 shows that there is a shallow
optimum at a held-out set size of about 1000 words when
fold-back is employed which is 7% of the training data
for this data set. Without fold-back the depletion of train-
ing examples makes itself felt very strongly. We conclude
that fold-back is generally advisable. Since the held-out
data is used to estimate the M discount parameters, a
held-out set of 1000 words should also work well with lar-
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Fig. 4. Graphme-to-phoneme conversion performance on the NETtalk
15k data as a function of different partitionings of the training data
ðL ¼ 1; M ¼ 6Þ. For the no fold-back case, the set of words used for
model estimation is reduced by the respective amount of held-out data. In
the fold-back case additional EM training iterations with the full training
set were done.
ger data sets. In the following experiments we have gener-
ally used fold-back, except on data sets which have a
dedicated development test set.
7.6. Effect of smoothing

In the theoretical derivation of the probabilistic model
much attention was given to smoothing. In this section we
want to verify our assumption about the importance of
smoothing empirically. In a first attempt to do this all dis-
count parameters were fixed to be zero. This emulates max-
imum likelihood estimation as far as possible with our
software implementation. Because we represent all proba-
bilities in the log-domain, zero probabilities are actually
taken to be approximately 10�1010

. For this reason, when
the decoder encounters an unseen grapheme sequence it will
use the back-off ‘‘distribution” even though it is penalized
with a quasi-zero weight. As there is no discounting the
back-off ‘‘distribution” is uniform. A true implementation
of naive maximum likelihood would simply bail out when
presented with an grapheme M-gram that was not seen in
training. Therefore, we think that the back-off as last resort
scheme is more reasonable to compare to. Nevertheless, it
performs quite poorly. As shown in Fig. 5, over-fitting kicks
in at M P 4. The lowest phoneme error rate on NETtalk
15k is 11.78% at M ¼ 3 ðand L ¼ 1Þ, which is 42% higher
than what we achieve with the smoothed model.

The main shortcoming of the unsmoothed model is that
it is completely indiscriminative on the unseen events. In a
second experiment the discount was set to a small but non-
zero value d ¼ 10�6. For comparison, the empirical dis-
counts determined during training as described are on this
data d1 ¼ 0:06; d2 ¼ 0:31; d3 ¼ 0:54; d4 ¼ 0:68; d5 ¼ 0:79.
Although this model assigns too little probability mass to
unseen events, when it must back-off it makes use of a
proper back-off distribution. We find that this marginally
smoothed model performs much better than the
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Fig. 5. Grapheme-to-phoneme conversion accuracy on NETtalk 15k for
smoothed and unsmoothed models as a function of context length ðL ¼ 1Þ.
Error bars show 90% confidence intervals.
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unsmoothed one, but still lags far behind the empirically
smoothed model (see Fig. 5). For short context lengths
ðM 6 2Þ error rates are near identical, as data is not sparse
in this regime. Beyond that, the error rate of the smoothed
model drops rapidly and reaches a plateau at 8.27% for
M P 5. For the marginally smoothed model the error rate
decreases more gradually and reaches its lowest value of
9.47% at M ¼ 11. Thus, the smoothed models achieve a
12.7% relative lower error rate with a much smaller model
(151k vs. 435k M-grams).

7.7. Training with maximum approximation

We now address the question whether the maximum
approximation during training is allowable (cf. Section
4.5). Models were trained on the NETtalk 15k data set with
maximum graphone sizes of L ¼ 1; . . . ; 3 using four differ-
ent settings. The model was initialized either flat (13), or
using unconstrained counts (19). Subsequently either EM
training (‘‘sum”, i.e. with summation over alternative seg-
mentations), or training with maximum approximation
(‘‘maximum”) was performed to convergence.

Results in terms of transcription accuracy are given in
Table 3. We find that training with maximum approximation
is very sensitive to initialization. The count-based initializa-
tion yields far better results for non-singular graphones. For
singular graphones the advantage is not quite significant.
Training with summation is rather insensitive to initializa-
tion. The difference between both initialization schemes is
insignificant in this case. Generally the maximum approxi-
mation in training hurts performance. For L ¼ 2 the differ-
ence is significant with a probability of improvement of
95% according to a pair-wise bootstrap analysis (Bisani
and Ney, 2004). For L ¼ 1 there seems not to be a significant
disadvantage to using the maximum approximation.

7.8. Transcription with summation

The experiment described in this section aims at determin-
ing the impact of the maximum approximation (22) on tran-
scription accuracy. Carrying out the sum over different
alignments of the same target sequence can be executed with
the help of n-best lists. N-best lists were computed for the
NETtalk 15k corpus as described in Section 6.3 using models
with M ¼ 6. Each entry in the list represents a unique gra-
phone sequence which implies the candidate transcription
Table 3
Comparison of model initialization and training schemes

Initialization Training L ¼ 1 L ¼ 2 L ¼ 3

Flat Maximum 8.42 12.40 20.71
Counts Maximum 8.36 10.84 13.65
Flat Sum 8.27 10.60 12.66
Counts Sum 8.27 10.59 12.61

Phoneme error rates in percent on NETtalk 15k with M ¼ 6. Training was
performed either with maximum approximation, or with normal EM
(‘‘sum”).
and has a posterior probability associated with it. The length
of each n-best list was chosen to be at least 50 and for each
word so that the accumulated posterior probability was
greater than 0.99. As a result, the oracle error of the n-best
lists is far below the first-best one. (By oracle error rate we
mean the error rate that could be obtained by picking the
best hypothesis from each list.) The same transcription
may occur multiple times in such an n-best list, each time
generated by a different alignment. We measure how often
these repetitions occur by stating the ratio of the number
of entries to the number of distinct pronunciations. From
each original n-best list two new lists were derived. For the
maximum-approximation n-best list, any repeated pronun-
ciations were simply dropped and the list was left in its origi-
nal order which is by decreasing maximum-approximated
posterior probability (26). For the n-best list with summa-
tion, we summed the posterior probabilities of the entries
which correspond to the same pronunciation. This list was
re-sorted according to this better approximation of the true
posterior probability. The average rank-order correlation
was computed to quantify how much the two resulting lists
differ. In addition we counted for what fraction of words
the top-scoring candidate changed. We also compared the
error rates for the top-scoring candidate in both cases.

The results are given in Table 4. We find that repeated
transcriptions are very rare in the case of singular graphones
ðL ¼ 1Þ. As a consequence accuracy results are practically
unaffected by carrying out the summation in decoding. For
the models employing larger graphones there is more ambi-
guity in the alignment of source and target sequence. This
manifests itself in a larger number of alignments for each
candidate transcription. Still the rank-order correlation is
very close to one, implying that different candidates change
position only rarely due to summation. In terms of accuracy,
summation in decoding leads to a small but consistent
improvement. Still, the best results are obtained with singu-
lar graphones where summation is unnecessary.
7.9. Performance evaluation

The following experiments are meant to evaluate how
well the method proposed here works on a variety of data
Comparison of grapheme-to-phoneme conversion with and without using
the maximum approximation in decoding

L ¼ 1 L ¼ 2 L ¼ 3 L ¼ 4

Length of n-best list 84.00 101.07 56.96 47.14
Distinct pronunciations 81.91 69.19 36.72 29.29
Alignments per pronunciation 1.0184 1.4330 1.6378 1.7108
Oracle PER [%] 0.23 0.46 1.43 3.74
Rank-order correlation 0.9838 0.9864 0.9796 0.9524
First-best changes [%] 0.0800 1.9992 2.9035 2.2065
PER without summation [%] 8.27 10.60 12.69 14.89
PER with summation [%] 8.27 10.42 12.43 14.75

NETtalk 15k, M ¼ 6.



Table 6
Grapheme-to-phoneme conversion accuracy for non-English data sets

Language Data set PER [%] WER [%]

German LexDb 0:28
 0:03 1:75
 0:18
French Brulex 1:18
 0:05 6:25
 0:24

Table 8
Sizes of grapheme-to-phoneme conversion models corresponding to the
accuracies reported in Tables 5 and 6

Data set Graphones Order Parameters

Beep 485 9 1,728,389
Celex 226 8 670,582
OALD 307 9 815,109

Table 7
Grapheme-to-phoneme conversion accuracy on the respective training sets

Language Data set PER [%] WER [%]

British English Beep 0:36
 0:01 2:18
 0:05
US English NETtalk 15k 0:44
 0:04 2:16
 0:20
US English CMUdict 0:38
 0:02 1:79
 0:07
German LexDb 0:007
 0:002 0:06
 0:02
French Brulex 0:05
 0:01 0:25
 0:05

The same models as in Tables 5 and 6 are used.
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sets, especially in comparison with other methods. We
applied the settings that were found to be best in the exper-
iments described above. It is conceivable that different set-
tings work better when data sets of significantly larger size
are used. However, we did not pursue this possibility, as
preliminary tests have indicated otherwise.

The settings used can be summarized as follows: models
used only singular graphones and were trained with the
EM algorithm (with summation) and flat initialization.
When the test set did not have a dedicated development test
set, a held-out set was created by randomly picking about
1000 words from the training data. In this case additional
fold-back training was done as a final step. On data sets
that have a development test set (Celex, Pronlex and Lex-
Db) it was used as the held-out set in training, but no
fold-back training was done. For each data set the
sequence model order was chosen that gave the highest
log-likelihood for the held-out set. In all cases this was
M ¼ 8 or 9. In decoding the maximum approximation
was used.

Table 5 summarizes our results on all English data sets
and quotes results published by other authors. Results on
non-English data sets are listed in Table 6. Unfortunately,
to our knowledge, no error rates have been published on
Table 5
Summary and comparison of grapheme-to-phoneme conversion accuracy
on English data sets

Data set Author PER [%] WER [%]

Beep This work 3:38
 0:03 20:08
 0:15
Celex = Bisani and Ney (2002) 3.98

= Vozila et al. (2003) 3.68 17.13
Chen (2003) 2.7

= This work 2:50
 0:11 11:42
 0:43

OALD Pagel et al. (1998) with POS 6.03 21.87
Pagel et al. (1998) w/o POS 23.34

= Chen (2003) 18.9
= This work 3:54
 0:19 17:49
 0:78

NETtalk 15k Andersen et al. (1996) 47.0
Jiang et al. (1997) 8.1 34.2
Chen (2003) 34.6
This work 8:26
 0:32 33:67
 1:10

NETtalk 18k Torkkola (1993) 9.2
Yvon (1996) 36.04
Galescu et al. (2001) 9.00 36.07
This work 7:83
 0:16 31:79
 0:54

NETtalk 19k Marchand and Damper (2000) 34.5
Chen (2003) 32.1
This work 7:66
 0:31 31:00
 1:09

CMUdict Galescu and Allen (2002) 7.0 28.5
= Chen (2003) 5.9 24.7
= This work 5:88
 0:18 24:53
 0:65

Pronlex = Chen (2003) conditional ME 8.00 31.8
= Chen (2003) joint ME 7.15 27.3
= This work 6:78
 0:31 27:33
 1:04

The lines marked with ‘‘=” use exactly the same data both for training and
testing. Other lines use faithful replications. ‘‘±” indicates 90% confidence
interval.

NETtalk 15k 149 8 246,149
NETtalk 18k 158 8 293,572
NETtalk 19k 155 8 296,184
CMUdict 270 9 1,556,784
Pronlex 282 8 1,321,060
LexDb 158 9 347,758
Brulex 193 8 401,739

Total number of graphones occurring in the model (after trimming),
M-gram order of the model, and total number of M-grams stored
(including back-off weights). For data sets using cross-validation the
maximum values are given.
these data sets by other authors. Error margins corre-
sponding to 90% confidence intervals were computed using
per-word bootstrap resampling (Bisani and Ney, 2004).
When the data set prescribed the use of n-fold cross-valida-
tion, n models were trained independently on n� 1=nth of
the data and evaluated on the remaining nth. Error rates
are in this case computed on the union of the n test sets,
and error margins are obtained from sampling over this
union. For reference the sizes of all models in terms of their
number of graphones and m-grams are reported in Table 8.
8. Discussion

The numbers in Table 5 show that the proposed method
is more accurate than or on par with all previously pub-
lished result. Apart from that, these results as well as the
various contrastive experiments reported provide some
insight on previously unanswered questions. First we
should point out that the results by Chen (2003) are very
close to those obtained by the method presented here. This
comes as no surprise as his approach is very similar, albeit



Table 9
Typical examples of automatically inferred graphones

pðqÞ gq uq pðqÞ gq uq

(a) English Celex (b) German LexDb

0.04825 ‘‘s” [s] 0.07438 ‘‘en” [E n]
0.03134 ‘‘t” [t] 0.05756 ‘‘t” [t]
0.02647 ‘‘s” [z] 0.03535 ‘‘ge” [g E]
0.02446 ‘‘ing” [I N] 0.03026 ‘‘n” [n]
0.02116 ‘‘l” [l] 0.02592 ‘‘r” [r]
0.02067 ‘‘p” [p] 0.02204 ‘‘l” [l]
0.01994 ‘‘n” [n] 0.02201 ‘‘s” [s]
0.01845 ‘‘d” [d] 0.02177 ‘‘te” [t E]
0.01817 ‘‘st” [s t] 0.01927 ‘‘sch” [S]
0.01166 ‘‘in” [I n] 0.01907 ‘‘m” [m]
0.01114 ‘‘m” [m] 0.01905 ‘‘de” [d E]
0.01073 ‘‘ly” [l I] 0.01725 ‘‘st” [s t]
0.00997 ‘‘b” [b] 0.01555 ‘‘e” [E]
0.00981 ‘‘c” [k] 0.01492 ‘‘es” [E s]
0.00813 ‘‘tion” [ S ] 0.01418 ‘‘er” [ a]

These are the 15 graphones with the highest unigram probabilities inferred
from the English Celex (a) and the German LexDb (b) database.
M ¼ 1; L ¼ 4.
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computationally more demanding. He uses only singular
graphones with a long-range M-gram model, which is the
same basic configuration that yielded the best performance
in our experiments. However, instead of a discounting and
interpolation type model estimation he uses a maximum-
entropy-based model with Gaussian priors. Our results
show that the maximum-entropy method is not essential
for obtaining this high level of accuracy. As both models
make use the same contextual information (M-grams),
smooth probabilities of unseen events and preserve lower-
order marginals, similar levels of performance can be
expected (Chen and Rosenfeld, 2000).

An advantageous property of joint-sequence models is
their capability to handle the alignment problem intrinsi-
cally (Och and Ney, 2003). This is convenient especially
in developing a grapheme-to-phoneme conversion system
for a new language where otherwise alignment rules would
need to be written by hand. Intuitively the ability of this
model to group symbols into larger units (‘‘chunking”) is
appealing as it allows for a natural mapping of frequent let-
ter groups such as ‘‘th” or ‘‘ph”. Table 9 shows some exam-
ples of automatically inferred graphones. Chen (2003)
doubted whether chunking was really beneficial to graph-
eme-to-phoneme conversion accuracy, but it should be
noted that no previous work has explored the use of non-
singular graphones in combination with a long-range
M-gram ðM P 5Þ sequence model. The results in Section
7.4 confirm previous reports that non-singular graphones
help when the overarching M-gram sequence model has a
short span. However, as the span of the M-gram model is
extended, shorter graphones gain in accuracy more quickly
than longer ones, and eventually perform better. Thus, sin-
gular graphones in combination with a long-range
sequence model yields the best performance. Accuracy
increases monotonically with M, and typically saturates
at M ¼ 8 or 9, which corresponds to typical word length
and confirms the common language modeling wisdom that
one should ‘‘remember” everything. It was further shown
that 1-to-n alignments can achieve comparable accuracy.
Such alignments may have advantages in terms of a simpler
decoder implementation.

The failure of non-singular graphones can partially be
explained by considering that larger graphone inventories
aggravate data sparseness in estimating the sequence
model. On the other hand, this shows that we have not
found the best conceivable training procedure, yet. Since
the shorter graphones are a subset of the larger ones, a per-
fect algorithm should be able to choose only the shorter
ones if they predict pronunciations best, and artificial con-
straints should be unnecessary. Still the ability of the algo-
rithm presented to infer variable length fragments from
unaligned data may be useful in other applications, for
example in finding sub-word units for open-vocabulary
speech recognition (Bisani and Ney, 2005; Galescu, 2003).

Concerning the use of the maximum approximation,
experiments confirm theory in that carrying out the sum-
mation consistently leads to better performance. During
training it is generally advisable to use the true EM algo-
rithm (with summation). For transcription, summation
does not have an impact, as long as only singular gra-
phones are used. We have also demonstrated that smooth-
ing is essential to obtaining highly accurate models.

By evaluating on unseen data this study has emphasized
the generalization capabilities of the grapheme-to-phoneme
converter. Yet, a major strength of sequence models of this
type is that they easily memorize long sequences from the
training data. This manifests itself in very low error rates
on the training set, shown in Table 7. However, the models
require a quite large amount of memory and are probably
not suitable for lexicon compression. Further research is
required for application in scarce memory environments.
9. Applications

9.1. Lexicon augmentation

Large vocabulary speech recognition (LVCSR) systems
rely on phonemic transcriptions to build hidden Markov
models for all the words in their recognition vocabulary
from smaller context dependent units (e.g. triphone mod-
els). In typical application domains the recognition vocab-
ulary will have reasonably high but rarely complete
coverage. When applications allow end users to add words
to the recognition vocabulary the phonemic representation
is typically hidden, because the user is not expected to
understand and use the phonetic notation. In this case
grapheme-to-phoneme conversion is used to produce a
pronunciation for the orthographic form provided by the
user. Desktop applications may additionally make use of
acoustic sample utterances.

Grapheme-to-phoneme conversion can also be used in
rapid cross-domain porting. In this scenario one wants to



Table 10
Phoneme-to-grapheme conversion accuracy for selected data sets

Language Data set Letter error
rate [%]

Word error
rate [%]

US English NETtalk 18k Galescu 10.03 41.87
This work 8:62
 0:16 37:27
 0:57

US English CMUdict Galescu 11.5 49.7
This work 10:35
 0:22 47:31
 0:73

German LexDb This work 0:41
 0:04 2:86
 0:22
French Brulex This work 5:62
 0:11 26:75
 0:44

Comparable results from Galescu and Allen (2002) are quoted.
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adapt an existing LVCSR system to work in a new applica-
tion domain. Typically the existing lexicon will have a
rather high out-of-vocabulary (OOV) rate on the new
domain and a large number of words must be added to
the system’s dictionary. Here grapheme-to-phoneme con-
version is a fast and cheap way to provide the missing pho-
netic transcriptions. In (Bisani and Ney, 2003) we studied
the trade-off between manual transcription effort and
speech recognitions accuracy. The advantage of data-dri-
ven methods such as the one presented here is that the
model can be trained on the existing system dictionary.
Therefore, the automatically produced transcriptions will
be consistent with the pronunciations taken over from
the existing dictionary. Gollan et al. (2005) as well as Lööf
et al. (2006) report on systems that have been ported to a
new domain using this technique. A grapheme-to-phoneme
converter that was developed independently will generally
deviate in terms of the phoneme inventories and transcrip-
tion conventions used.

Speech recognition systems often use multiple pronunci-
ations for a word to account for some variation in the way
users speak. The n-best decoder described in Section 6.3
allows generation of alternative pronunciation candidates.
If the training data contains (systematic) pronunciation
variation, the n-best list decoder will consistently produce
variants. However, there is little guidance as to how many
pronunciations should be accepted in this case. It should
also be noted that the algorithm will not come up with
likely variants in the sense of natural phonological varia-
tion. The variants generated will reflect the ambiguity
and variation found in the training data, but typically this
method cannot be used on its own to suggest variants due
to dialect or other phonological processes that are not pres-
ent in the training data.

9.2. Sound-to-letter conversion

Only relatively few publications have addressed the
inverse problem of grapheme-to-phoneme conversion,
namely inferring the correct spelling of a word from its
phonemic transcription. Examples include the works of
Meng et al. (1994) and Galescu and Allen (2002). An
advantage of the method proposed here is that it uses sta-
tistical models that are symmetric with respect to both sides
of the transduction. It is thus straight forward to apply
them in the opposite direction.

Table 10 states some results to illustrate the level of
accuracy that can be achieved. On the English NETtalk
data set we find the spelling accuracy to be relatively close
to the pronunciation accuracy on the reverse task. The let-
ter error rate is 10% higher that the phoneme error rate.
At 76%, this ratio is significantly worse on CMUdict. This
discrepancy can be explained by the higher number of
proper names, abbreviations and acronyms in CMUdict.
A high accuracy on German shows again that this lan-
guage has a rather phonetic orthography. In contrast to
this, the phoneme-to-grapheme accuracy on the French
data set is strikingly poor. This can be attributed to the
notoriously high number of homophones in this language
and in particular to the prevalence of silent final
consonants.

Combining sound-to-letter conversion with a phoneme
recognizer to orthographically transcribe out-of-dictionary
words suggests itself. However, unguided acoustic pho-
neme recognition is notoriously inaccurate (Bisani and
Ney, 2001), which impedes the applicability of phoneme-
to-grapheme conversion in speech transcription.
9.3. Facilitate creation of pronunciation dictionaries

The techniques described in this article were used dur-
ing the creation of the German LC-STAR lexicon for speech
synthesis and recognition (Ziegenhain, 2005; Bisani et al.,
2005). This lexicon contains information about over
46,000 proper names and 54,000 common words. For
each entry part-of-speech information and phonemic
transcriptions in SAMPA notation (Wells, 1997a; Wells,
1997b) are provided including syllabification and stress
marks.

Creating the phonemic transcriptions in this lexicon was
facilitated by using the data-driven statistical grapheme-to-
phoneme converter described here. The phonemic tran-
scriptions have to indicate both syllable boundaries and
stress. Therefore, we simply added a syllable boundary
marker as well as a stress marker to the phoneme inven-
tory. Our method has no provisions to account for the
structural properties of stress and syllabification. There-
fore, structural errors occur, e.g. multiple primary stresses
in a word or syllables without a nucleus. Nevertheless, we
found that our G2P method provided reasonably good syl-
lable boundary and stress prediction. Structural errors are
not harmful in this application, because they can be filtered
out very easily.

Initially, the most frequent words were transcribed man-
ually. Then a grapheme-to-phoneme conversion model was
estimated and additional words were transcribed automat-
ically. These automatic transcripts were manually verified
and corrected and then added to the G2P training data
yielding an improved model. These steps were iterated sev-
eral times. Over several iterations the fraction of incorrect
pronunciations found in the verification step was reduced
below 1%. In early iterations we selected which words to



Table 11
Comparison of different confidence measures for grapheme-to-phoneme
conversion

Measure Equal error rate [%]

Orthographic perplexity 41.7
Orthographic probability 41.1
Phonotactic perplexity 41.3
Phonotactic probability 35.6
Grapheme-to-phoneme posterior probability 31.2
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Fig. 6. Detection-error trade-off curves to grapheme-to-phoneme confi-
dence measures.
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verify randomly. In later iterations we computed the ortho-
graphic perplexity of each word, which is defined as
pðgÞ�1=jgj, using an M-gram model pðgÞ based on the G2P
training data available at that point. The words with the
highest perplexity were chosen for manual correction.
These are hardest for the G2P model to predict correctly,
because they correspond least to the words seen in training.
However, the reader should be warned that there is a dan-
ger in overdoing this. Odd words may accumulate in the
training data in higher than natural concentration, causing
the algorithm to prefer the exception over the rule.

9.4. Spotting errors in pronunciation databases

When manually revising a pronunciation lexicon it is
very helpful to have some guidance of where to look for
wrong entries. We have examined the following criteria
for finding incorrect entries in the G2P output:

� Orthographic probability: pðgÞ
This measure takes into account that the G2P model
typically gives bad results for words that are very unlike
the words seen in the training set. Dissimilarity with the
training data is reflected by a low probability.
� Orthographic perplexity: pðgÞ�1=jgj

� Phonotactic probability: pðuÞ
Phonotactic probability measures how much the word
sounds like a typical word of the language. Strange
unpronounceable phoneme sequences should have a
low phonotactic probability.
� Phonotactic perplexity: pðuÞ�1=juj

� Grapheme-to-phoneme posterior probability: pðujgÞ
This criterion is theoretically most appealing as it corre-
sponds to our estimate of the probability that u is the
correct pronunciation of g.

A quantitative evaluation of these criteria has been car-
ried out in the course of the LC-STAR German lexicon pro-
ject. The grapheme-to-phoneme conversion model used in
this experiment was trained on 31,405 manually verified
example pronunciations, 2% of which were used as a
held-out set, without fold-back. The model uses only singu-
lar graphones with an M-gram order of M ¼ 7. Another 86
thousand words have been transcribed with this model and
the afore mentioned criteria have been computed for each
of them. From this list we have randomly selected 5746
words for manual verification. We did this by sampling
uniformly from the range of observed values of the quanti-
ties studied, and picking the word with the closest value.
This procedure allows us to judge error rate as a function
of the confidence measure considered. Uniform sampling
on a per entry basis, would have led to very poor coverage
of the regions of very high or very low confidence. The list
of entries was sorted alphabetically before it was given to a
human expert for correction, so that the expert had no
indication of whether a particular pronunciation had high
or low confidence.
Fig. 6 shows detection error trade-off curves for the
three best measures considered. Equal error rates for all
studied measures are given in Table 11. Equal error rate
(also called cross-over error rate) is the operating point at
which false acceptance and false rejection rates are equal.
It is obvious that posterior probability performs much bet-
ter than all of the other measures. Orthographic and
phonotactic perplexity are consistently inferior to the cor-
responding probability. A possible explanation for this is
that perplexity favors longer words because the impact of
unlikely letters or phonemes is diluted. In contrast to this,
our data indicate that longer words seem to have a higher
chance of containing an error. Presumably this is simply
because long words have more phonemes that can be
wrong.

It should be emphasized that the pronunciations
assessed were generated by the very same method and
data that were used to verify them. This means that clas-
sification into correct and wrong entries is harder than
finding gross mistakes or inconsistencies between different
sources.



450 M. Bisani, H. Ney / Speech Communication 50 (2008) 434–451
Acknowledgements

The work reported in this article was partially funded by
the European Commission under Human Language Tech-
nologies Projects CORETEX (IST-1999-11876), LC-STAR (IST-
2001-32216), and TC-STAR (IST-2002-FP6-506738).
References

Andersen, O., Kuhn, R., Lazaridès, A., Dalsgaard, P., Haas, J., Nöth, E.,
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